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A Novel Image Quality Assessment With Globally
and Locally Consilient Visual Quality Perception

Sung-Ho Bae and Munchurl Kim, Senior Member, IEEE

Abstract— Computational models for image quality assess-
ment (IQA) have been developed by exploring effective features
that are consistent with the characteristics of a human visual
system (HVS) for visual quality perception. In this paper, we
first reveal that many existing features used in computational
IQA methods can hardly characterize visual quality perception
for local image characteristics and various distortion types.
To solve this problem, we propose a new IQA method, called the
structural contrast-quality index (SC-QI), by adopting a struc-
tural contrast index (SCI), which can well characterize local and
global visual quality perceptions for various image characteristics
with structural-distortion types. In addition to SCI, we devise
some other perceptually important features for our SC-QI that
can effectively reflect the characteristics of HVS for contrast
sensitivity and chrominance component variation. Furthermore,
we develop a modified SC-QI, called structural contrast dis-
tortion metric (SC-DM), which inherits desirable mathematical
properties of valid distance metricability and quasi-convexity.
So, it can effectively be used as a distance metric for image
quality optimization problems. Extensive experimental results
show that both SC-QI and SC-DM can very well characterize
the HVS’s properties of visual quality perception for local image
characteristics and various distortion types, which is a distinctive
merit of our methods compared with other IQA methods. As a
result, both SC-QI and SC-DM have better performances with a
strong consilience of global and local visual quality perception as
well as with much lower computation complexity, compared with
the state-of-the-art IQA methods. The MATLAB source codes of
the proposed SC-QI and SC-DM are publicly available online at
https://sites.google.com/site/sunghobaecv/iqa.

Index Terms— Image quality assessment metric, local visual
quality, normalized distance metric, structural contrast index.

I. INTRODUCTION

S INCE many image processing and computer vision
applications aim at maximizing perceived visual qualities

and/or minimizing perceived distortions in images, it is very
important to develop more elaborate computational image
quality assessment (IQA) methods and to estimate degree of
visual qualities for distorted images [1]–[3]. Computational
IQA methods can typically be categorized into three folds
according to usability of reference images: full-reference (FR),
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reduced-reference (RR), no-reference (NR) IQA methods [2].
This paper focus on the full reference IQA (FR-IQA) method
which predicts the subjective visual quality score (z) of a
distorted image (Y) under its given reference image (X).
Mathematically, the FR-IQA modeling problem can be
formulated as

zi = Q ◦ F (Xi , Yi |�) + εi (1)

where Xi , Yi are the i -th reference and its distorted image,
respectively, and zi is the subjective quality score for Yi .
F(·) in (1) is an FR-IQA method where � is a set of its
model parameters and εi is a prediction error. Since predicted
values of F(·) in (1) and their subjective quality scores often
have nonlinear relations, a non-degenerate monotonic and
non-linear function Q(·) is applied to map the output of F(·)
to zi in (1) [3].

Typically, mean squared error (MSE) has been considered
one of the most commonly used distortion metric not only
for the evaluation of image fidelity (or quality) but also for
optimization of image processing algorithms. Although MSE
is easy to compute and has many mathematically desirable
properties of a valid distance metricability, differentiability
and convexity, it does not highly correlate with measured
subjective visual qualities for distortions [1]–[3]. To overcome
this problem, many computational FR-IQA methods have been
developed with an aim at coinciding with the subjective visual
quality scores [1]–[20].

The Structural SIMilarity (SSIM) index [8] is considered a
milestone work in the FR-IQA modeling problem. The SSIM
is based on an assumption that human visual system (HVS)
importantly extracts structural information from image textures
in visual perception and firstly reveal that contrast/structural
information in image signals can be important features to
represent perceived visual quality characteristics of HVS.
After the great success of SSIM [1], finding such effective
features that can well characterize contrast and/or structural
information in image textures has become one of key issues
in enhancing performance of FR-IQA methods [11]–[16].
For example, the first order difference operators (e.g., Scharr
operator [21]) and the second order difference operators (e.g.,
Laplacian operators [16]) have widely been adopted to char-
acterize contrast/ structural information and have often played
key roles in recent FR-IQA methods [11]–[16]. More detailed
analysis on some representative FR-IQA methods and their
features are given in Section II.

This paper also brings up an issue that, although the
achievements of recent FR-IQA methods are quite remarkable,
the efforts to develop more optimization-friendly FR-IQA
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methods have scarcely been conducted. If FR-IQA methods
have some desirable mathematical properties, i.e., valid
distance metricability, differentiability and convexity (or quasi-
convexity), then usability of the FR-IQA methods as fidelity
functions in optimization problems of image processing
applications may significantly be increased. For example, valid
distance metricability of FR-IQA methods can help analyze
and prove the convergence in many iterative algorithms.
Furthermore, differentiability and convexity (or quasi-
convexity) properties of FR-IQA methods will assure a global
minimum on optimization problems in image processing
applications.

Contributions: This paper offers three contributions
including the aforementioned issues as followings:

(i) Based upon our best knowledge, we firstly reveal that
HVS has different strategies in perceiving visual quality
depending jointly on different image texture character-
istics and distortion types. Based on this, thorough and
systematic analyses of some representative features in
the existing FR-IQA methods are performed in terms
of their consistencies in the responses for visual quality
perception according to different image texture charac-
teristics and distortion types. These analyses draw an
essential conclusion that the performance of FR-IQA
methods can further be improved by adopting adaptive
features that are highly consistent with the global and
local visual quality perception for different distortion
types and various image texture characteristics.

(ii) We propose a novel FR-IQA method, called Structural
Contrast-Quality Index (SC-QI) by adopting a Structural
Contrast Index (SCI) which tends to adaptively charac-
terize perceived visual quality for different image texture
characteristics with structural-distortions types where
the structural-distortion is defined as a distortion due
to change in inter dependency among neighbor pixels.
In addition to SCI, we introduce some other perceptually
important features that can effectively reflect the proper-
ties of contrast sensitivity and chrominance component
variation which are also incorporated into our SC-QI.
Thanks to SCI, SC-QI has a desirable advantage to
elaborately quantify global and local visual qualities for
various image characteristics with structural-distortion
types, which were hardly been observed in other state-
of-the-art FR-IQA methods. As a result, SC-QI outper-
forms the state-of-the art FR-IQA methods with much
lower computation complexity.

(iii) We also introduce a modified version of SC-QI, called
Structural Contrast-Distortion Metric (SC-DM) which is
based on a low level approximation of SC-QI using a
normalized distance metric. The in-depth analysis on
the mathematical properties of SC-DM reveals that our
SC-DM has a perception-friendly framework and is a
valid distance metric having quasi-convexity in a feature
space. Therefore, SC-DM has much potential to be used
as an objective function for optimization problems.

This paper is organized as follows: Section II briefly reviews
two important characteristics of HVS popularly used in exist-
ing FR-IQA methods and presents overview of important

Fig. 1. An example of spatial CSF [35].

Fig. 2. An example of CM effect.

existing FR-IQA methods; Section III analyzes our new obser-
vation for visual quality perception and introduces the overall
structure and features of the proposed SC-QI; Section IV
extends SC-QI to SC-DM and analyzes the perceptual and
mathematical properties of SC-DM; In Section V, the perfor-
mance validations for both SC-QI and SC-DM are presented
in terms of prediction accuracy and computation complexity;
and Section VI concludes this paper.

II. RELATED WORKS

A. Two Important Characteristics of HVS

We start by briefly reviewing two important characteristics
of HVS, i.e., spatial contrast sensitivity function (CSF) and
contrast masking (CM) effect, which have often been applied
in some existing FR-IQA methods.

The spatial CSF indicates that HVS has different sensitiv-
ities to distortions depending on spatial frequency in cycles
per degree (cpd). Fig. 1 shows an example of the spatial
CSF where a sinusoidal grating pattern is injected into a gray
background. In Fig. 1, the spatial frequency of the sinusoidal
grating pattern increases along the x-axis, and the contrast ratio
of the sinusoidal grating pattern decreases along the y-axis.
As shown in Fig. 1, HVS has different sensitivities of visual
perception to the changes in the sinusoidal grating pattern
depending on spatial frequency, which shows a bandpass
property [35].

The CM effect indicates that HVS has different sensitivities
to distortions depending on background image texture char-
acteristics. Fig. 2 shows an example of the CM effect where
the red and blue boxes define homogeneous and complex
texture local image regions, respectively. In Fig. 2, pseudo-
additive white Gaussian noise (AGN) distortions (N) are
injected into an original image (X), resulting in the distorted
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image Y(= X + N). Interestingly, HVS easily perceives the
AWGN-distortions in the homogeneous region (e.g., red box
in Fig. 2-(c)) and hardly perceives them in the image region
of complex texture pattern (e.g., blue box in Fig. 2(c)).
This implies that HVS perceives different visual quality to
distortions depending on image texture characteristics [23].

It is noticed that modeling CM effect must take into
account the degree of image texture complexity. The texture
complexity is defined as a quantity that increases as the
resulting distortion-visibility threshold increases due to
the contrast masking effect of background image texture.
A recent psychophysical experiment result revealed that
perceived texture complexity is associated with not only the
contrast intensity but also the structureness of background
texture patterns where the structureness is defined as
being inversely proportional to the randomness of image
patterns [23]. Based on this observation, a novel texture
complexity metric, called ‘structural contrast index (SCI)’
that is designed to consider both structureness and contrast
intensity of image patterns was proposed [23]. In this
paper, we found out that SCI can be an effective feature
in characterizing perceived visual quality on images with
structural-distortion types for various texture characteristics.
So, SCI is used as a key feature of our FR-IQA methods.

B. Structural Contrast Index

We briefly describe the mathematical formulation of
SCI [23] in a self-contained manner. The SCI (τ ) is devised to
estimate the perceptual complexity of image texture patterns
as the ratio of structureness (KT) and contrast intensity (CI)
for the coefficients of an N × N DCT block B as

τ = C Iα/K T β (2)

where α and β are model parameters. KT in (2) reflects the
randomness of texture patterns and is defined as the kurtosis
of the magnitudes of normalized DCT AC coefficients, which
is given by

K T = m4/(m2)
2 (3)

where mk is the k-th moment of normalized DCT AC coeffi-
cients ( p) and is defined as

mk =
∑

ω∈B,ω �=0

ωk p (ω) (4)

ω in (4) is a spatial frequency value in cycles per degree (cpd)
for (u, v)-th DCT coefficient and is calculated by ω = δ ·√

u2 + v2 where δ is a constant and is determined by a visual
angle per pixel [23]. p(ω) is the magnitude of a normalized
DCT coefficient at ω and is defined as

p (ω) = (
ε + |c (ω)|λ)/Z (5)

where Z is a normalization factor that makes p(ω) serve as a
probability value over ω, and is given by

Z =
∑

ω∈B,ω �=0

(
ε + |c (ω)|λ) (6)

In (5) and (6), c(ω) is the DCT coefficient value at ω, ε
is a small constant value to avoid unstable results when the
denominator in (4) is close to zero, and λ is an adjustment
parameter to fit measured experimental results. The contrast
intensity in (2) is defined as CI = m0/N2 where N is the
height (= width) of an N × N DCT block.

In this paper, we use the inverse SCI (τ ∗ = τ−1) for
FR-IQA modeling such that more distortion-sensitive (i.e., less
complex) image texture regions have higher τ ∗ values. The
model parameters of the inverse SCI (τ ∗) are empirically set
to ε = 0.25, λ = α = β = 1, and we scale τ ∗ such that the
calculation of τ ∗ is simplified to

τ ∗ =

∑
(u,v)∈B

{(
u2 + v2

)2 · (ε + |c (u, v)|)
}

∑
(u,v)∈B

{(
u2 + v2

) · (ε + |c (u, v)|)}2 (7)

where c(u, v) is the (u, v)-th DCT coefficient value. Thorough
analyses on SCI in terms of the characterization power of
perceived visual quality is performed in Section III.

C. Overview of Important FR-IQA Methods

This section presents an overview of the existing FR-IQA
methods. We categorize the FR-IQA methods into three
folds: (i) visibility characteristic based methods; (ii) contrast/
structure feature based methods; and (iii) internal brain-
mechanism based methods. Some key FR-IQA methods of
each category are described as follows:

1) Visibility Characteristic Based Methods:
• Perceptual Image Distortion (PID) [4], Noise Quality

Index (NQM) [5] and Visual Signal-to-Noise
Ratio (VSNR) [6] incorporated visibility characteristics
of HVS to distortions such as contrast sensitivity
functions, luminance adaptation and contrast masking
effects. These methods mainly assumed that perceived
visibility characteristics and perceived visual quality
characteristics of HVS are proportional each other.

• Larson and Chandler [7] assumed that HVS has different
strategies between distortions under visibility thresholds
and distortions above visibility thresholds (supra-
threshold distortions). Based on this, they proposed Most
Apparent Distortion (MAD) where perceptual distortions
are adaptively calculated by a geometric mean between
a distortion visibility-based model and a distortion
appearance-based model.

2) Contrast/Structure Feature Based Methods:
• Wang et al. [8] proposed SSIM based on an assumption

that HVS importantly extracts structural information from
image textures in visual perception. The SSIM index
incorporates three representative features for luminance,
contrast and structural information that are extracted by
the average pixel intensity values, the standard deviation
of the local image regions and the cross correlation values
between two local image regions, respectively. There are
many extensions to the SSIM index, such as M-SSIM
(Multiscale SSIM) [9] and IW-SSIM (Information content
weighted SSIM) [10], etc.
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Fig. 3. One original image X and its two distorted images (Y1 and Y2) of 512 × 384 pixels which are obtained from the TID2013 IQA database [22]. The
image Y1 (b) is distorted by pseudo-addictive Gaussian noise (AGN), and the image Y2 in (c) is distorted by pseudo-Gaussian blur (GB) from the original
image X. The green, red and yellow boxes bound the collocated homogeneous, edge and complex texture images regions.

• Liu et al. [11] assumed that variations of contrast/
structural information based on gradient magnitudes in
image signals are important in perceived visual quality.
In this regard, they proposed a Gradient SIMilarity based
FR-IQA method (GSM) which uses four directional high-
pass filters to capture the change of contrast/structural
information in images.

• Zhang et al. [12] proposed a Riesz transform based
Feature SIMilarity (RF-SIM) index by adopting first- and
second-order Riesz transforms to characterize local struc-
tures in images. And visual quality scores are calculated
only for edge pixels obtained by the Canny edge operator.
This is made based on an assumption that edge informa-
tion is essential for evaluating visual quality scores.

• Zhang et al. [13] also proposed a Feature
SIMilarity (FSIM) index where a phase congruency and
a gradient magnitude are used as core features to charac-
terize perceived visual quality. The phase congruency and
gradient magnitude are calculated by log-scaled values of
Gabor filtered coefficients and the Scharr gradient oper-
ator [21], respectively. Also, they applied adaptive local
weights based on phase congruency such that perceptually
more important image regions have higher weights in
pooling process of estimated local visual quality values.

• Recently, Zhang et al. [14] proposed a Visual Saliency-
induced Index (VSI) where a visual saliency index and
a gradient magnitude are used as two core features. The
visual saliency index is calculated by phase congruency
with some simple priors (color temperature and center
priors). And the gradient magnitude is obtained by the
Scharr gradient operator [21]. The VSI also uses locally
adaptive pooling weights that have higher values for
more salient local regions.

• Xue et al. [15] proposed a very simple perceptual
distortion metric, called Perceptual-fidelity Aware Mean
Square Error (PAMSE). The PAMSE is calculated by
Gaussian smoothened residuals between two images.

• Very recently, Xue et al. [16] also proposed a very fast
FR-IQA method, called GMSD (Gradient Magnitude
Similarity Deviation). This is established based on an
assumption that image gradients are more vulnerable
to image distortions and different local structures in
distorted images from different degrees of degradations.

So, the GMSD employs local image quality maps based
on the global variation of gradients for overall image
quality prediction. The GMSD is not only very fast
for computation but also highly correlated with the
perceived visual quality.

3) Internal Brain-Mechanism Based Methods:
• Sheikh and Bovik [17] treated the FR-IQA problem as an

information fidelity problem. So they proposed a Visual
Information Fidelity (VIF) index as an extension to its
former method that is an information fidelity criterion
index (IFC) [18]. In VIF, information fidelity is quanti-
fied by shared information between a reference and its
distorted signals.

• Wu et al. [19] adopted an unified brain theory to build a
FR-IQA method, called a free energy principle indicating
that our brain predicts orderly (or structural) visual infor-
mation and tries to avoid residual disorderly uncertainty.
So, they used an autoregressive prediction algorithm such
that image signals are decomposed into orderly and
disorderly signals. To quantify perceived visual qualities,
they calculated visual quality scores for orderly signals
and disorderly signals, and combined them into a single
predicted visual quality value.

Most of the aforementioned FR-IQA methods explicitly
and/or implicitly assumed that contrast/structural information
in image signals plays a very important role in perceived visual
quality. Therefore, finding effective features to characterize
such contrast/structural information may be a key issue in
modeling an effective FR-IQA method.

III. PROPOSED STRUCTURAL CONTRAST-QUALITY INDEX

BASED ON STRUCTURAL CONTRAST INDEX

A. Our New Observation for Visual Quality Perception

We start by revealing that HVS has different strategies in
perceiving visual quality jointly for different image texture
characteristics and distortion types. Fig. 3 shows an original
image and its two distorted images of 512 × 384 pixels
which are obtained from the TID2013 IQA database [22].
Y1 in Fig. 3-(b) is a distorted image caused by AGN, and
Y2 in Fig. 3-(c) is a distorted image by pseudo-Gaussian
blur (GB) for the original image X in Fig. 3-(a). The green,
red and yellow boxes in Fig. 3-(a), -(b) and -(c) define the
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Fig. 4. The distortion maps D(X, Y1) and D(X, Y2) of the AGN-distorted image (Y1), and the GB-distorted image (Y2), respectively, for the original
image (X). The first and the second rows illustrate D(X, Y1) and D(X, Y2), and each column shows images obtained by the ‘variance’, ‘PLCC’, ‘Scharr
operator’, ‘4D-HF’ and ‘SCI’ features in order. A higher intensity value indicates a relatively larger distortion (difference) in each image.

collocated homogeneous, edge and complex texture image
regions, respectively.

These two kinds of distortions differently affect the per-
ceived visual quality of HVS. For AGN distortions, HVS tends
to mostly perceive such distortions (or quality degradations)
in homogeneous image regions (e.g., green box) while hardly
perceiving them in complex texture regions (e.g., yellow box),
as shown in Fig. 3-(a) and Fig. 3-(b). On the other hand,
HVS perceives GB distortions mostly in complex texture
regions (e.g., yellow box) and edge regions (e.g., red box)
than the homogeneous regions (e.g., green box) as shown in
Fig. 3-(a) and Fig. 3-(c). This implies that HVS perceives
distortions depending on their distortion types and image
texture characteristics.

B. Analysis on Contrast/Structure Features
in FR-IQA Methods

We analyze the characteristics of visual features for
contrast/structure information within FR-IQA methods
with respect to the two different kinds of distortions
(i.e., AGN and GB) in three image regions of different
characteristics (homogeneous, edge and complex texture char-
acteristics). To do so, we use the four popular visual features
which have widely been used in the existing FR-IQA methods.
We briefly describe these four visual features as follows:

• Variance [8]–[10]: this is calculated for a local image
region to quantify the contrast strength of a local image
pattern.

• Pearson Linear Correlation Coefficient (PLCC)
[8]–[10]: this is jointly calculated between two local
image regions to quantify structural similarity between
two local regions.

• Gradient operators (Sobel, Prewitt and Scharr operators
[13]–[16], [21]): Gradient values are obtained via first
order difference operators. In this paper, we use the Scharr
operator under test [21].

• Four Directional highpass filter (4D-HF) [11]: The
masks of four different directional highpass filters are
convolved for a local image region and the maximum

output value among the four highpass-filtered responses
is selected as a texture complexity value.

In this qualitative analysis, we also use SCI in [23] to see
its effectiveness of adaptive characterization power for visual
quality perception with respect to different image texture types
for the two kinds of distortion types.

It is known that most FR-IQA methods have estimated
distortions using a difference (or relative difference) of feature/
signal values obtained from an original image and its distorted
image [2]–[20]. Likewise, in the paper, we compare the
difference of feature values between the original image X and
its distorted images Y1 and Y2 to see the estimated distortions
by the features for the perceived visual qualities. We apply a
simple difference operation to see local distortions estimated
by feature values. The absolute difference between two feature
values are calculated by |φ(x)−φ(y)|, x ∈ X and y ∈ Y, where
φ(·) is a feature function (e.g., a gradient operator). However,
since PLCC is jointly calculated from two local image signals
(x, y), we simply calculate distortions by taking a negative
sign to the output value of PLCC.

Fig. 4 shows the distortion maps of Y1, and Y2 for X,
denoted by D(X, Y1) and D(X, Y2), respectively. The pixel
intensity values in each distortion map is scaled to be [0, 255]
for better visibility purpose. The first and second rows in
Fig. 4 illustrate the distortion maps for Y1 and Y2, respectively,
and the images in the column order are obtained by the
variance, PLCC, Scharr operator, 4D-HF and SCI features,
respectively. Note that a higher intensity value indicates a
relatively larger distortion (difference) value. It is shown
in Fig. 4-(a), -(b), -(f) and -(g) that the variance and PLCC
features yield similar distortions for homogeneous, edge and
complex texture regions in both AGN- and GB-distorted
images, hence weakly reflecting the image texture character-
istics. In case of Scharr operator, the estimated distortions for
both Y1 and Y2 show slightly negative correlations with the
perceived visual qualities as shown in Fig. 4-(c) and -(h).
For the 4-D HF feature, the estimated distortions for both
Y1 and Y2 exhibit slightly positive correlations with the
perceived distortions as shown in Fig. 4-(d) and -(i).
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Fig. 5. A block diagram of local SC-QI computation between a local image signal x and its local distorted image signal y.

It can be seen in Fig. 4-(e) and -(j) that SCI can effectively
reflect the perceived distortions for both Y1 and Y2. The
SCI yields large distortion values in homogeneous regions
and small distortion values in complex texture regions, as
shown in Fig. 4-(e), which is well agreed with the perceived
distortion of HVS for Y1. Also, it produces small distortion
values in homogeneous regions and large distortion values
in edge and complex texture regions for Y2, as shown in
Fig. 4-(j), which is also well correlated with the visual quality
perception of HVS. These consistent responses of SCI with
respect to HVS imply that SCI can be an effective feature to
well reflect the visual quality perception of HVS for different
local image characteristics with different structural-distortion
types. In this regard, we incorporate SCI as a primary feature
for contrast/structural information into our SC-QI and SC-DM
which then have adaptive characterization power for visual
quality perception.

It is noticed that, although SCI-distortion maps broadly
show good agreement with visual quality perception in a
subjective manner of qualitative analysis, they sometimes
fail to precisely reflect visual quality perception. Especially,
SCI can hardly characterize chromatic-distortions and some
non-structural distortions, e.g., Mean shift (intensity shift)
distortion. This is because SCI is designed to only consider
structural distortions of luminance components.

C. Proposed Structural Contrast-Quality Index

Fig. 5 shows a block diagram of local SC-QI computation
between a reference local image signal x ∈ X within a whole
original image X and its local distorted image signal y ∈ Y
within a whole distorted image Y. A local SC-QI value is
calculated for each 4 × 4 image block between x and y. First,
the pixel intensity values for signals x and y are normalized to
be in the range of [0, 1]. And, if x and y are color image signals
in RGB color spaces, they are converted into the LMN color
space to decorrelate luminance (L) and chrominance (M, N)
components [24] as

⎡

⎣
L
M
N

⎤

⎦ =
⎡

⎣
0.06 0.63 0.27
0.30 0.04 −0.35
0.34 −0.60 0.17

⎤

⎦

⎡

⎣
R
G
B

⎤

⎦ (8)

We define xL, xM and xN (or, yL, yM, yN) as local image
blocks of the luminance and two chrominance components

in X (or Y), respectively. Only xL are transformed into DCT
coefficients to calculate feature values of SCI and frequency-
dependent contrast energies. We adopt a similarity measure
form [8] which has popularly been used in many FR-IQA
methods. A local SC-QI value between x and y is calculated by
the multiplication of six similarity measures sk , k = 1, . . . , 6
as

f (x, y) =
6∏

k=1

sk (9)

where all the similarity measures have the same form as

sk
(
φx(k ), φy(k)|θ k, υk

) =
(

2φx(k )φy(k) + θk

φ2
x(k)

+ φ2
y(k)

+ θ k

)υk

(10)

In (10), φx(k) ∈ R1 is the feature function of x ∈ RN×N where
N = 4 for the k-th similarity measure, and θ k is adopted to
avoid unstable results when the denominator is close to zero.
Also, θ k and υk in (10) serve as model parameters to control
the descending gradient sensitivity of the similarity measure
form. The product form of the multiple similarity measures
in (9) has a meaning that the perceived local visual quality is
low when at least one similarity measure among the multiple
similarity measures is low. The SCI values between xL and yL
are used in the first similarity measure (s1) where φx(1) is equal
to τ ∗(xL) in (7).

We also introduce three features to reflect the contrast
sensitivity function (CSF) of HVS that has different sensi-
tivities to distortions depending on spatial frequency [25].
To reflect the CSF into the SC-QI design, we devise three
similarity measures (s2, s3, s4) taking the form in (10) by
comparing contrast energy values in low frequency (LF),
middle frequency (MF) and high frequency (HF) regions in
4×4 DCT blocks, respectively, for xL and yL. The contrast
energy values φx(2), φx(3) and φx(4) for s2, s3 and s4 in (10),
respectively, are calculated as

φx(k) =
∑

(u,v)∈Rk

p (u, v) (11)

where p(u, v) is the normalized magnitude of a DCT coeffi-
cient at (u, v). Note that p(u, v) can be converted to (5) by
its spatial frequency value ω = δ · √

u2 + v2. Also, in (11),
k = 2, 3 and 4. R2, R3 and R4 in (11) indicate the LF, MF and
HF regions, respectively. We divide these frequency regions
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Fig. 6. Spatial CSF in LF, MF and HF regions for a 4×4 DCT block:
(a) classification of frequency regions depending on the CSF obtained in [25];
(b) Three frequency regions in a 4×4 DCT block.

depending on their sensitivities to distortions according to the
psychophysical experiment results in [25]. Fig. 6 shows the
spatial CSF in the LF, MF and HF regions of a 4 × 4 DCT
block. We found out that the exponent υk , k = 1, 2, 3, 4
in (10) can help slight performance improvement of SC-QI but
can introduce additional computation complexity except when
υk = 1. So, we set υk = 1, k = 1, 2, 3, 4 for computation
simplicity in our SC-QI.

It is known that variations of chrominance components
(M and N signals in (8)) also importantly affect perceived
visual quality in color images [13], [14]. To reflect this
effect into SC-QI, we devise last two similarity measures
s5 and s6 by comparing two average chrominance values,
φx(5) = E[xM] and φx(6) = E[xN], where E[·] is the
expectation operator. The model parameter values of θ k and υk

in s5 and s6 are identically set in SC-QI (i.e., θ5 = θ6 and
υ5 = υ6), due to their similar effects on perceived quality of
HVS [13], [14].

After the local SC-QI value is estimated between each pair
of x( j ) and y( j ) for all local image blocks ( j = 1, . . . , J )
where J is the total number of the local image blocks in
X and Y, their weighted average is taken in a pooling stage
to produce the global (whole) perceptual quality value for Y
compared to X. We define the global perceptual visual quality
value as

F(X, Y) = E[ f ] = 1

W

J∑

j=1

w
(

x( j ), y( j )
)

f
(

x( j ), y( j )
)

(12)

where w(x, y) is the local weight based on visual priors
with respect to a local importance (e.g., degree of image
content information [9], phase congruency [13], visual saliency
index [14], etc.) and W in (12) is a normalization factor and
is the summation of all w(x, y) values over all J local image
blocks.

In this paper, we adopt a distortion-sensitivity of local
signals as the local weight in (12). This is based on an assump-
tion that more distortion-sensitive regions (i.e., less complex
texture regions) play more important roles in visual quality
perception. This assumption is reasonable, since distortions in
sensitive regions can easily be detected than other regions [24],
[26], [27]. We utilize the inverse SCI (τ ∗ = φx(1) or φy(1)) as
the local weight in the pooling stage of the local SC-QI values.

The local weight for x is obtained as

wx = 0.2 + φ3
x (13)

Since more sensitive regions are easily detectable for distortion
than less sensitive regions, the higher one of the two wx and
wy values in collocated regions, x and y, is used as the final
local weight w(x, y) for the local image region. So, w(x, y)
in (12) is calculated as a softmax operator between wx and wy,
which is expressed as

wx,y = (A + B)−1 (
A · wx + B · wy

)
(14)

where A = exp(χ · wx) and B = exp(χ · wy), and χ is a scale
factor and is set to 100 which is high enough to be a good
approximate of the max operator.

The six model parameters of SC-QI, i.e., (θ1, θ2, . . . , θ5
and υ5) are found with TID2013 IQA database [22]. To avoid
the over-fitting problem of the model parameters for some
specific training datasets, 2-fold cross validation is performed
with each pair of two subsets of TID2013 database where the
initial model parameter values are randomly set, and all the
distorted images in the database are randomly split into two
subsets for the corresponding cross validation. In our case,
the model parameters of SC-QI are optimized using a genetic
algorithm [28]. In order to avoid possible content bias, this
2-fold cross validation is performed 100 times for the database.
The final model parameters are determined by taking medians
of all the estimated parameter values obtained from 100 times
trials [29]. The final parameter values of SC-QI are θ1 = 8.7,
θ2 = 0.6, θ3 = 2 × 103 θ4 = 1.7, θ5 = 6.3 × 10−3 and
υ5 = 7.3 × 10−3.

IV. PROPOSED STRUCTURAL CONTRAST DISTORTION

METRIC WITH NORMALIZED DISTANCE METRICS

Inspired by the works in [20] and [30], our SC-QI is
extended to SC-DM using a normalized root mean squared
error (NRMSE) such that SC-DM obtains a desirable math-
ematical property of valid distance metricability with quasi-
convexity in a feature space. The NRMSE is expressed as

d (x, y|θ) = ‖x − y‖2√
‖x‖2

2 + ‖y‖2
2 + θ

(15)

where θ is a model parameter to avoid unstable results when
the denominator is close to zero. To extend SC-QI to SC-DM,
we adopt NRMSE for a distortion measure instead of a
similarity measure such as

d
(
φx, φy|θ

) := NRMSE
(
φx, φy|θ

) =
∣∣φx − φy

∣∣
√

φ2
x + φ2

y + θ
(16)

where φx ∈ R1+and φy ∈ R1+are non-negative real values. The
local SC-DM for x and y is formulated as the sum of squared
six distortion measures (i.e., NRMSEs) as

f (x, y) = ‖d‖2
2 (17)

where d = {d1, d2, . . . , d6}. d1, d2, d3 and d4 utilize the
same features as s1, s2, s3 and s4 described in Section III.
For d5 and d6, the features in s5 and s6 are slightly modified
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to have non-negative real values as φx(5) = E[xM] + 0.35
and φx(6) = E[xN] + 0.6 where the minimum values of M
and N channel components are −0.35 and −0.6, respectively.
In the experiments, we use the six model parameters of
SC-DM where θ1, θ2, θ3 and θ4 are the same as those of
SC-QI, and θ5 and θ6 are empirically set as θ5 = θ6 = 2.

The same weights and pooling method for SC-QI are
employed in SC-DM. Therefore, the only changes from the
SC-QI to SC-DM are the distortion measure form in (16),
the local SC-DM measure form in (17), and the features for
d5 and d6. The NRMSE offers two advantages to SC-DM as
follows:

(i) The NRMSE in (16) reflects the Weber’s law in HVS,
indicating that the sensitivity of HVS to signal dif-
ferences depends on the current stimulus [8]. Thanks
to this, NRMSE is capable of yielding much higher
correlations with perceived visual distortions than the
L2-norm.

(ii) The NRMSE based local SC-DM in (17) is a valid
difference metric. Furthermore, it is quasi-convex
and differentiable, which can widen the applicability
of SC-DM in image quality optimization problems.
More detailed proofs and mathematical validations of
SC-DM as a valid distance metric with differentiable
quasi-convex function are given in Appendix.

Regarding the first advantage in (i), we prove that NRMSE
clearly reflects the Weber’s law that is often modeled as

c = |
|/x (18)

where c is a constant value, and 
 = x − y for x , y ∈ R1+
(= a set of nonnegative real number) is the smallest visibility
threshold of HVS for the difference between an original signal
(or stimulus) value x and its distorted signal value y. The
Weber’s law model in (18) indicates that visibility threshold 

increases as the original signal value x increases. We can easily
show that NRMSE has a constant value when 
/x is fixed and
x2 � θ (i.e., θ/x2 ≈ 0). That is, substituting y with x + 

into NRMSE in (15) and rearranging it yield

d (x, y|θ) = (
/x)√
1 + (1 + 
/x)2

(19)

This indicates that Weber’s law is an underlying principle in
behavior of NRMSE under x2 � θ .

Our local SC-DM form in (17) takes the advantage of its
quasi-convexity that assures a global minimum on any convex
set of a function domain [31]. To make convenient analysis
for the sum of squared NRMSE in (17), we define the squared
NRMSE as a normalized mean square error (NMSE) as

d2 (x, y|θ) : = NMSE (x, y|θ) = (x − y)2

x2 + y2 + θ
(20)

where θ ≥ 0 and x , y ∈ R1+.
Fig. 7 shows an example of NMSE of x for fixed y values

(y = 1, 2 and 3) at θ = 1. This shows that NMSE has the
minimal values at x = y and is quasi-convex for x .

To analyze the behavior of SC-DM in the form of a sum
of NMSE components, we compare equi-distortion contours

Fig. 7. NMSE plots versus x for fixed y values (y = 1, 2 and 3) at θ = 1.

Fig. 8. The equi-distortion contours of MSE and NMSE for an image block
consisting of two signal components x = {x1, x2}. (a) MSE. (b) NMSE.

of the MSE and NMSE. Fig. 8 shows the equi-distortion
contours of MSE and NMSE for the case that an image block
consists of two signal components x = {x1, x2}. There are
three image blocks, each of which has three equi-distortion
contours that have the same distortion levels (e.g., NMSE =
0.1, 0.2 and 0.3).

As shown in Fig. 8-(a), the shapes of equi-distortion con-
tours of MSE are invariant to both the magnitude of the
original signal components and the direction of distorted signal
components, thus resulting in isotropic distortion contours at
any position. On the other hand, as shown in the three cases (i),
(ii) and (iii) in Fig.8-(b), the NMSE has anisotropic contours of
equi-distortion depending on the magnitudes of original signal
components and their distorted signal component. This clearly
reflects Weber’s law in (18). We also analyze the behaviors of
NMSE according to the model parameters θ . The two NMSEs
for the cases (i) and (ii) in Fig. 8-(b) have different model
parameters of θ = {1, 1} and θ = {10, 10}, respectively, for
the same magnitude of signal components. This implies that
larger model parameter values make NMSE less sensitive to
the distortions than smaller ones. So, the model parameters θ

in the NMSE play two important roles of avoiding unstable
results when the denominator goes to zero and controlling
the sensitivity to each component (distortion) of the distortion
measure in (17).

V. EXPERIMENTAL RESULTS

A. Experimental Setup

Table I shows the information of the eight publicly
available IQA datasets [14]. To verify the effectiveness of
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TABLE I

INFORMATION OF EIGHT PUBLICLY AVAILABLE IQA DATASETS

TABLE II

DISTORTION TYPES IN EACH DATASET

both SC-QI and SC-DM compared to the state-of-the-art
FR-IQA methods, we perform our experiments on the four
largest databases, i.e., TID2013 [22], TID2008 [32], CSIQ [7]
and LIVE [33] that contain total 6,345 distorted images with
their corresponding subjective visual quality scores obtained
from total 1,951 subjects. Table II shows distortion types in
each database.

In our experiments, total twelve FR-IQA methods,
i.e., PSNR, PAMSE [16], VSNR [6], SSIM [8], GSM [11],
M-SSIM [9], IW-SSIM [10], RF-SIM [12], GMSD [15],
IGM [19], FSIMC [13] and VSI [14] are compared with
SC-QI and SC-DM in terms of prediction accuracy and
computation complexity. To show the prediction accuracy, we
use four performance measures, i.e., Spearman Rank-Order
Correlation coefficient (SROC) and Kendall Rank-Order
Correlation coefficients (KROC), Pearson Linear Correlation
Coefficient (PLCC) and Root Mean Square Error (RMSE).
The SROC, KROC and PLCC measures present monotonicity
between measured subjective visual quality scores and their
estimated values by the FR-IQA methods, while RMSE

presents prediction error. Usually SROC and KROC are
considered representative performance measures in FR-IQA
methods [3]. In order to measure PLCC and RMSE values,
we adopt a logistic regression in [34] as the non-linear
mapping function to map the estimated values of FR-IQA
methods to their measured subjective visual quality scores.
The overall performance is measured for all the four test
datasets by taking weighted averages for the numbers of
the test images on each database. It is noticed that overall
RMSE cannot offer meaningful measure in the experiments,
because each IQA database has different scales for measured
subjective visual quality scores (e.g., LIVE contains the
measured subjective quality scores ranging from 0 to 100,
while CSIQ takes values between 0 and 1.). So, we do not
measure overall RMSE in our experiments.

Likewise in the most existing FR-IQA
methods [8]–[15], [19], we adopted downsizing process
for input images by a factor of 2 using a 2 ×2 uniform kernel
before our proposed SC-QI and SC-DM are performed.
We found out that this downsizing process helps reduce
computational complexity while scarcely degrading the
performances of the SC-QI and SC-DM. To detect the
blockiness artifacts in distorted images, the local SC-QI
and SC-DM values are calculated using a sliding window
approach with every one pixel shift [8].

B. Performance Comparison in Prediction Accuracy

Table III shows the overall performance for the FR-IQA
methods under comparison in terms of prediction accuracy,
where the first-, second- and third-ranked performances are
highlighted in blue, red and black bolds, respectively.

Overall, both the proposed SC-QI and SC-DM outperform
all other compared FR-IQA methods in terms of overall SROC,
KROC and PLCC. This implies that SCI is an effective feature
to reflect the perceptual behavior of HVS for visual quality per-
ception. It is noticed that SC-QI slightly outperforms SC-DM
in prediction performance. This is mainly due to the fact that
the local quality (or distortion) measure forms are different
for SC-QI and SC-DM. The local SC-DM is calculated
by summing all the squared distortion measures, while the
local SC-QI is obtained in terms of the multiplication of all
similarity measures. One theory in psychophysics, called the
probabilistic summation theory [35], may explain why the
multiplication of all similarity measures is more appropriate
than the summation of all the squared distortion measures. The
probabilistic summation theory indicates that HVS perceives
a distortion if at least one signal component in a subband
domain is visibly distorted among various signals components.
So, a multiplicative model with multiple similarity measures
can be more consistent with the intrinsic behaviors of HVS
than a summation model. However, it is noticed that the
performance difference between SC-QI and SC-DM is small
(about 0.3%- and 0.4%-point differences in overall SROC and
KROC, respectively). Compared to VSI, our SC-QI (SC-DM)
shows better prediction performances with 0.6(0.3)%-point,
1.3 (0.9)%-point and 0.6 (0.4)%-point higher overall SROC,
KROC and PLCC values, respectively.
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TABLE III

THE OVERALL PERFORMANCE OF THE FOURTEEN FR-IQA METHODS

TABLE IV

THE STATISTICAL TEST RESULTS FOR

VSI VS. 
SC-QI (
VSI VS. 
SC-DM )

In order to see the statistical significance for the
performance improvement on the proposed FR-IQA methods
compared to the state-of-the-art ones, we performed statistical
tests between VSI and the proposed methods. For this, we
define absolute difference values (� = ∣∣z − ẑ

∣∣) between
measured MOS values (z) and estimated MOS values (ẑ)
by an FR-IQA method where lower � values indicate better
prediction performances.

For simplicity purpose, we define the sets of absolute
difference values obtained from VSI, SC-DM and SC-QI as
�VSI, �SC-DM and �SC-QI.

We firstly check the normality of the residuals between �VSI
and �SC-QI (�SC-DM) using Shapiro-Wilk tests for each test
IQA database. Since there is no case with a normal distribution
(all p-values are approximately zero) for the residuals of each
dataset, Wilcoxon rank-sum tests were performed. We per-
formed Wilcoxon rank-sum tests for the residuals between
� VSI and �SC-QI (�SC-DM) with 5% significance level
(α = 0.05). Table IV summarizes the statistical testing results.

It is shown in Table IV that �VSI and �SC-QI turned out
to be not significantly different (NSD) each other for CSIQ
and LIVE, and are significantly different (SD) for TID2013

Fig. 9. Two original images X1 and X2 obtained from the TID2013
dataset [22].

and TID2008. That is, the performance differences between
VSI and SC-QI are statistically significant for TID2013 and
TID2008 and are not statistically significant for CSIQ and
LIVE. It should be noted that TID2013 and TID2008 con-
tains many more distorted images with 24 and 17 distortion
types, respectively, while CSIQ and LIVE are relatively small
datasets having distorted images with only 6 and 5 distortion
types, respectively. So, it can be concluded that our statistical
tests confirmed the statistical significance of performance
improvement on our SC-QI compared to the state-of-the-art
one (VSI). While �VSI and �SC-DM turned out to be NSD for
TID2013, CSIQ and LIVE, and are SD for TID2008. That is,
the performance differences between VSI and SC-DM are sig-
nificant only for TID2008 but are not significant for TID2013,
CSIQ and LIVE. This result indicates that performance of
VSI is somewhat comparable to SC-DM. Such reasonably
high performance of VSI comes from the fact that it uses
an important visual prior such as visual saliency information
which enables to allocate higher local weights for visually
salient regions during a local quality pooling stage. Some
high-ranked FR-IQA methods (FSIMC and VSI) can hardly
characterize localized visual quality perception for different
image texture characteristics and distortion types, thus limiting
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Fig. 10. Distorted images by AGN (first row), GB (second row) and J2KC (third row) from the original images X1 in Fig. 9. The FSIMC , VSI and reversed
SC-DM maps in each row are computed from X1 with AGN, GB and J2KC distorted images in order. (a) AGN distortion of X1. (b) Local FSIMC map.
(c) Local VSI map. (d) Local SC-DM map (reversed). (e) GB distortion of X1. (f) Local FSIMC map. (g) Local VSI map. (h) Local SC-DM map (reversed).
(i) J2KC distortion of X1. (j) Local FSIMC map. (k) Local VSI map. (l) Local SC-DM map (reversed).

its applicability only for image quality assessment tasks on
whole images. While, our SC-QI and SC-DM can provide
elaborate local visual quality perception maps which are highly
correlated with our visual quality perception for various image
texture characteristics and distortion types. Also, SC-DM has
mathematically desirable properties whereas the top-ranked
FR-IQA methods are neither valid distance metrics nor convex
(or quasi-convex) functions. Since most of the image quality
optimizations in image processing applications perform in the
unit of a local image patch (e.g., [36]) rather than a whole
image, our SC-QI and SC-DM have much potential to be
applied in such image processing applications to estimate local
visual quality values.

C. Analysis on SC-DM for Local Visual Quality Perception

We thoroughly analyze the performance consistency of
our SC-DM and SC-QI with respect to local visual quality
perception of HVS for different image texture characteristics
and distortion types. For this, the quality maps of the two
top-ranked FR-IQA methods, FSIMC and VSI, except SC-DM
and SC-QI in Table III, are demonstrated for performance
comparison. Since SC-DM and SC-QI have very similar local
visual quality maps, we representatively demonstrate local
visual quality maps for SC-DM.

We illustrate local visual quality maps of FR-IQA methods
for three different kinds of distortions with AGN, GB and
JPEG2000 Compression noise (J2KC), which are popularly

observed in many image processing applications. Since local
SC-DM estimates perceived distortions which are inversely
proportional to the perceived visual qualities, we demonstrate
reversed local SC-DM maps for the convenient comparison
with other FR-IQA methods. So, higher pixel intensities in
visual quality maps indicate higher visual quality values.

In our experiments, we use two reference images selected
from TID2013 database [22]. Fig. 9 shows the two reference
images X1 and X2 of 512 × 384 pixels. In our experi-
ments, the green, red and yellow boxes in figures define
the homogeneous, edge and complex texture image regions,
respectively.

Fig. 10 and Fig. 11 show the distorted images of X1 and
X2 by AGN, GB and J2KC distortions with their scaled local
visual quality maps of the three FR-IQA methods (FSIMC ,
VSI, SC-DM). For the AGN-distorted images, perceived
distortions are quite visible in homogeneous image regions
while they are less visible in complex texture regions as shown
in Fig. 10-(a) and Fig. 11-(a). It can be seen in
Fig. 10-(b), -(c), -(d) and Fig. 11-(b), -(c), -(d) that
SC-DM is very consistent with the perceived distortions.
That is, SC-DM estimates lower visual quality values in
homogeneous regions and higher visual quality values in
complex texture regions, while FSIMC and VSI can hardly
capture the distortions in homogeneous image regions.

Also, for the GB-distorted images, perceived distortions
are mostly affected from the blurred edges and texture
regions while they are less visible in homogeneous regions
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Fig. 11. Distorted images by AGN (first row), GB (second row) and J2KC (third row) from the original images X2 in Fig. 9. The FSIMC , VSI and reversed
SC-DM maps in each row are computed from X2 with AGN, GB and J2KC distorted images in order. (a) AGN distortion of X2. (b) Local FSIMC map.
(c) Local VSI map. (d) Local SC-DM map (reversed). (e) GB distortion of X2. (f) Local FSIMC map. (g) Local VSI map. (h) Local SC-DM map (reversed).
(i) J2KC distortion of X2. (j) Local FSIMC map. (k) Local VSI map. (l) Local SC-DM map (reversed).

as shown in Fig. 10-(e) and Fig. 11-(e). It can be seen in
Fig. 10-(f), -(g), -(h) and Fig. 11-(f), -(g), -(h) that SC-DM
appropriately predicts lower visual quality values in edge and
complex texture image regions and higher visual quality values
in homogeneous image regions, which is well agreed with
visual quality perception of HVS. However, FSIMC and VSI
can scarcely reflect the considerable quality degradations in
complex texture image regions, which is not consilient with
local visual quality perception of HVS. It is also observed
in Fig. 10-(f) and Fig. 11-(f) that FSIMC has negative
correlations with perceived visual quality for edge image
regions, i.e., FSMC predicts high visual quality values for
blurred edge regions. Similar results are observed in the J2CK
distorted images as shown in Fig. 10-(i), -(j), -(k), -(l) and
Fig. 11-(i), -(j), -(k), -(l).

In conclusion, SC-DM and SC-QI have a distinct merit of
adaptive characterization power for global and local visual
quality perception depending various image characteristics and
distortion types.

D. Performance Comparison in Computation Complexity

The computation complexity of each FR-IQA method is
also measured in terms of average frames per second (fps).
For this, all distorted images in TID2013 dataset are used.
This experiment is performed on a 3.2 GHz Intel Core i7TM

processor with 24GB RAM. Table V tabulates the aver-
age running speeds of the fourteen FR-IQA methods under
comparison.

TABLE V

AVERAGE RUNNING SPEED OF THE FOURTEEN FR-IQA METHODS IN

FRAMES PER SECOND (fps)

It is shown in Table V that PSNR, PAMSE, GMSD and
SSIM are much faster than SC-QI and SC-DM. However,
their performances are fairly worse even than the top-3
recent FR-IQA methods, i.e., IGM, FSIMC and VSI. So, we
compared the running speeds of SC-QI and SC-DM with the
top-3 FR-IQA methods (IGM, FSIMC , and VSI). Since our
proposed methods and the top-3 FR-IQA methods have the
same downsizing process, the running speeds of them are
compared for the test images of the downsized resolutions.

Fig. 12 shows the comparison for the top-3 state-of-the-
art FR-IQA methods and the proposed SC-QI and SC-DM
in terms of prediction accuracy (overall SROC and KROC
in Table III) and computation complexity (fps). As shown in
Fig. 12, it is clear that SC-QI and SC-DM not only outperform
the prediction performance but also run much faster than the
top-3 FR-IQA methods.
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Fig. 12. Comparison for the top 3 FR-IQA methods and the proposed SCIQ
and SC-DM in terms of estimation accuracy (overall SROC and KROC) and
computation complexity (fps): (a) SROC and (b) KROC.

VI. CONCLUSION

In this paper, we firstly reveal that HVS has different
strategies in measuring perceived visual quality depending
on different image texture characteristics and distortion
types. Based on this, we propose a novel FR-IQA index,
called SC-QI, which incorporates a very effective feature,
i.e., SCI, to adaptively characterize local visual quality per-
ception with respect to different image texture characteristics
with structural-distortion types. We also further extend SC-QI
to SC-DM based on a normalized distance metric such that
SC-DM obtains desirable mathematical properties of valid
distance metricability and quasi-convexity. To verify the
performance of the proposed SC-QI and SC-DM, qualitative
and quantitive experiments were extensively performed on
large IQA datasets. The experimental results show that SC-QI
and SC-DM can very elaborately predict global and local
visual quality scores, thus yielding better prediction perfor-
mance with fast computation compared to the state-of-the-art
FR-IQA methods. Since many image quality optimizations
in image processing applications performed in units of local
image patches, our SC-QI and SC-DM can have great merit
to be applied into such image processing applications.

APPENDIX

We first show that NRMSE in (16) for x , y ∈ R1+ is a valid
distance metric which is referred to [20].

Theorem 1: The NRMSE is a metric for θ > 0.
Proof: It is easy to verify that

1. d (x, y) = d (y, x)
2. d (x, y) ≥ 0 for ∀x , y ∈ R1+
3. d (x, y) = 0, if and only if x = y

It remains to prove the triangular inequality such that

d (x, y) + d (y, z) ≥ d (x, z) (21)

where x , y, z ∈ R1+. Without loss of generality, we assume
that x ≤ y such that (21) is rearranged as

√
x2 + z2 + θ√
x2 + y2 + θ

· |x − y|
|x − z| +

√
x2 + z2 + θ√
y2 + z2 + θ

· |y − z|
|x − z| ≥ 1

(22)

(22) can be proved by considering three cases as follows:
Case 1) y ≤ x ≤ z. The left second term in (22) holds

√
x2 + z2 + θ√
y2 + z2 + θ

≥ 1, and
|y − z|
|x − z| ≥ 1 (23)

So, the triangular inequality holds when y ≤ x ≤ z.
Case 2) x ≤ z ≤ y. The left first term in (22) holds

√
x2 + z2 + θ√
x2 + y2 + θ

≥ 1, and
|x − y|
|x − z| ≥ 1 (24)

So, the triangular inequality holds when y ≤ x ≤ z.
Case 3) x ≤ y ≤ z. For two constants a ≥0 and c ≥ 0, we

define a convex function

f (x) :=
√

x4 + 2cx2 + a (25)

where the convexity of f (x) can easily be verified by checking
the positive sign of its second derivative. By definition of
convexity, we have

f (y) ≤ λ · f (x) + (1 − λ) · f (z) (26)

The constants, a and λ, are chosen to have

a := x2 y2 + y2z2 + x2z2 + c
(

x2 + y2 + z2
)

+ c2 (27)

λ = |z − y|/|x − z| (28)

Finally, we obtain

|x − y|
√

x2 + y2 + θ
+ |y − z|√

y2 + z2 + θ
≥ |x − z|√

x2 + z2 + θ
(29)

Therefore, the proof is complete.
We now verify that the L2-norm of vectors consisting of

NRMSE elements, i.e., ||d||2, belongs to a metric space. For
this, the following increasing property is needed:

Definition 1: For any x ∈ RK+ and y ∈ RK+ , an L2-norm in
RK+ satisfies the following increasing property:

‖x‖2 ≤ ‖x + y‖2 (30)

The following theorem shows that ||d||2 is also a metric.
Theorem 2: For any x ∈ RK+ and y ∈ RK+ , ||d||2 is a metric

in RK+ .
Proof: It is easy to verify that

1. ‖d (x, y)‖2 = ‖d (y, x)‖2
2. ‖d (x, y)‖2 ≥ 0 for ∀ x, y ∈ RK+
3. ‖d (x, y)‖2 = 0, if and only all x = y

It remains to prove the triangular inequality. Since d1, . . . , d6
are all metrics, every distortion component of d satisfies



BAE AND KIM: NOVEL IQA WITH GLOBALLY AND LOCALLY CONSILIENT VISUAL QUALITY PERCEPTION 2405

the triangular inequality. From the increasing property in
Definition 3, we conclude that

‖d (x, z)‖2 ≤ ‖d (x, y) + d (y, z)‖2

≤ ‖d (x, y)‖2 + ‖d (y, z)‖2 (31)

Therefore, the proof is complete.
We now show that NMSE in (20) is a quasi-convex function.

For the convenience of the reader, we describe the definition
of quasi-convexity. We start by defining convexity of a set.

Definition 2: A subset X of a vector space is convex for
∀x , y ∈ X and for λ ∈ (0, 1) if it satisfies

λx + (1 − λ) y ∈ X (32)

Definition 3: For a convex set X , a function f : X → R is
referred to be quasi-convex if its h-sublevel set Xh satisfies a
convex set for all h ∈ Range( f ), where the h-sublevel set is
defined as

Xh = {x ∈ X and f (x) ≤ h} (33)

Theorem 3: For a fixed y, NMSE is quasi-convex for
H = {x, y ∈ R1+}.

Proof: We start by seeing the range of NMSE. Substituting x
with 
 + y and a rearrangement yields

NMSE (x, y|θ) = 1

(1 + y/
)2 + (y/
)2 + θ
(34)

This shows that NMSE has the maximum value of (1 + θ)−1

for 
 = ∞ or −y. So, the NMSE has the maximum range of
[0, 1) when θ > 0. Therefore, it is sufficient that the NMSE is
quasi-convex for NMSE < 1. We first establish an inequality
to see that the set of points x under NMSE < 1 is a convex
set as

NMSE (x, y|θ) ≤ h (35)

where h ∈ [0, 1). This inequality becomes

(x − y/(1 − h))2 ≤ y2((1 − h)−2 − 1) + θh/(1 − h) (36)

This inequality holds that the set of points x in (36) is a round,
indicating that the set is a convex set. In the case for h = 1,
we have the inequality as

x ≥ −yθ/2 (37)

Since θ ∈ R1+, NMSE holds quasi-convexity
for x , y ∈ R1+.

It is straightforward to see that the local SC-DM in (17) is
also quasi-convex, because each squared distortion measures
in (17) is the form of NMSE which is quasi-convex.
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